Research: Diagnostic yield of 90-kVp low-tube-voltage carotid and intracerebral CT-angiography

 2018 Mar 8:20170927. doi: 10.1259/bjr.20170927. [Epub ahead of print]

Diagnostic yield of 90-kVp low-tube-voltage carotid and intracerebral CT-angiography: effects on radiation dose, image quality and diagnostic performance for the detection of carotid stenosis.

Abstract

OBJECTIVE:

To investigate the impact of low-tube-voltage 90-kVp acquisition combined with advanced modeled iterative reconstruction algorithm (Admire) on radiation exposure, image quality, artifacts, and assessment of stenosis in carotid and intracranial CT angiography (CTA).

METHODS:

Dual-energy CTA studies of 43 patients performed on a third-generation 192-slice dual-source CT were retrospectively evaluated. Intraindividual comparison of 90-kVp and linearly blended 120-kVp equivalent image series (M_0.6, 60% 90-kVp, 40% Sn-150-kVp) was performed. Contrast-to-noise and signal-to-noise ratios of common carotid artery, internal carotid artery, middle cerebral artery, and basilar artery were calculated. Qualitative image analysis included evaluation of artifacts and suitability for angiographical assessment at shoulder level, carotid bifurcation, siphon, and intracranial by three independent radiologists. Detection and quantification of carotid stenosis were performed. Radiation dose was expressed as dose-length product (DLP).

RESULTS:

Contrast-to-noise values of all arteries were significantly increased in 90-kVp compared to M_0.6 (p < 0.001). Suitability for angiographical evaluation was rated excellent with low artifacts for all levels in both image series. Both 90-kVp and M_0.6 showed excellent accordance for detection and grading of carotid stenosis with almost perfect interobserver agreement (carotid stenoses in 32 of 129 segments; intraclass correlation coefficient, 0.94). dose-length product was reduced by 40.3% in 90-kVp (110.6 ± 32.1 vs 185.4 ± 47.5 mGy·cm, p < 0.001).

CONCLUSION:

90-kVp carotid and intracranial CTA with Admire provides increased quantitative and similarly good qualitative image quality, while reducing radiation exposure substantially compared to M_0.6. Diagnostic performance for arterial stenosis detection and quantification remained excellent. Advances in knowledge: 90-kVp carotid and intracranial CTA with an advanced iterative reconstruction algorithm results in excellent image quality and reduction of radiation exposure without limiting diagnostic performance.

https://www.ncbi.nlm.nih.gov/pubmed/29493282